Wikipedia talk:WikiProject Mathematics
Main page | Discussion | Content | Assessment | Participants | Resources |
This is the talk page for discussing WikiProject Mathematics and anything related to its purposes and tasks. |
|
Archives: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73Auto-archiving period: 15 days |
To view an explanation to the answer, click on the [show] link to the right of the question. Are Wikipedia's mathematics articles targeted at professional mathematicians?
No, we target our articles at an appropriate audience. Usually this is an interested layman. However, this is not always possible. Some advanced topics require substantial mathematical background to understand. This is no different from other specialized fields such as law and medical science. If you believe that an article is too advanced, please leave a detailed comment on the article's talk page. If you understand the article and believe you can make it simpler, you are also welcome to improve it, in the framework of the BOLD, revert, discuss cycle. Why is it so difficult to learn mathematics from Wikipedia articles?
Wikipedia is an encyclopedia, not a textbook. Wikipedia articles are not supposed to be pedagogic treatments of their topics. Readers who are interested in learning a subject should consult a textbook listed in the article's references. If the article does not have references, ask for some on the article's talk page or at Wikipedia:Reference desk/Mathematics. Wikipedia's sister projects Wikibooks which hosts textbooks, and Wikiversity which hosts collaborative learning projects, may be additional resources to consider. See also: Using Wikipedia for mathematics self-study Why are Wikipedia mathematics articles so abstract?
Abstraction is a fundamental part of mathematics. Even the concept of a number is an abstraction. Comprehensive articles may be forced to use abstract language because that language is the only language available to give a correct and thorough description of their topic. Because of this, some parts of some articles may not be accessible to readers without a lot of mathematical background. If you believe that an article is overly abstract, then please leave a detailed comment on the talk page. If you can provide a more down-to-earth exposition, then you are welcome to add that to the article. Why don't Wikipedia's mathematics articles define or link all of the terms they use?
Sometimes editors leave out definitions or links that they believe will distract the reader. If you believe that a mathematics article would be more clear with an additional definition or link, please add to the article. If you are not able to do so yourself, ask for assistance on the article's talk page. Why don't many mathematics articles start with a definition?
We try to make mathematics articles as accessible to the largest likely audience as possible. In order to achieve this, often an intuitive explanation of something precedes a rigorous definition. The first few paragraphs of an article (called the lead) are supposed to provide an accessible summary of the article appropriate to the target audience. Depending on the target audience, it may or may not be appropriate to include any formal details in the lead, and these are often put into a dedicated section of the article. If you believe that the article would benefit from having more formal details in the lead, please add them or discuss the matter on the article's talk page. Why don't mathematics articles include lists of prerequisites?
A well-written article should establish its context well enough that it does not need a separate list of prerequisites. Furthermore, directly addressing the reader breaks Wikipedia's encyclopedic tone. If you are unable to determine an article's context and prerequisites, please ask for help on the talk page. Why are Wikipedia's mathematics articles so hard to read?
We strive to make our articles comprehensive, technically correct and easy to read. Sometimes it is difficult to achieve all three. If you have trouble understanding an article, please post a specific question on the article's talk page. Why don't math pages rely more on helpful YouTube videos and media coverage of mathematical issues?
Mathematical content of YouTube videos is often unreliable (though some may be useful for pedagogical purposes rather than as references). Media reports are typically sensationalistic. This is why they are generally avoided. |
This project page does not require a rating on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | ||||||||
|
It would be much appreciated if people could read the Emmy Noether article and check for statements that are unclear, under-cited, or otherwise unbecoming the encyclopedia project. XOR'easter (talk) 22:06, 12 October 2024 (UTC)
- For those more knowledgeable with the subject matter than I am, the two sections that may need some more citations the most are the ones on ascending and descending chain conditions and algebraic invariant theory. Sgubaldo (talk) 23:29, 12 October 2024 (UTC)
- My impression from working on the article previously was that everything discussed in it is addressed in the references already present (and for a math topic, having a clickly blue linky number for each sentence doesn't necessarily go further to satisfying WP:V than having one per subsection). But this would be a good opportunity to point readers at references that are particularly good. Anybody have favorite books about either of those? XOR'easter (talk) 18:30, 13 October 2024 (UTC)
- The section on algebraic invariant theory doesn't make enough contact with Noether's work in the area, which was eclipsed by that of Hilbert. Both the Rowe and Dick source describe her dissertation done under Gordan, which was devoted to symbolic computation of invariants, and in fact a later source of some embarrassment. The section would benefit by emphasizing this, and summarizing the sources better (and referring to them). Tito Omburo (talk) 19:33, 13 October 2024 (UTC)
- Care to tackle that? I could try, but I'm not sure when I'll have an uninterrupted block of time long enough. XOR'easter (talk) 21:00, 13 October 2024 (UTC)
- @Sgubaldo, @Tito Omburo, @XOR'easter. The discussion now is into FARC: one delist and one keep. I have found some of the unsourced sections after looking up at its content. Dedhert.Jr (talk) 11:55, 29 October 2024 (UTC)
- Care to tackle that? I could try, but I'm not sure when I'll have an uninterrupted block of time long enough. XOR'easter (talk) 21:00, 13 October 2024 (UTC)
- The section on algebraic invariant theory doesn't make enough contact with Noether's work in the area, which was eclipsed by that of Hilbert. Both the Rowe and Dick source describe her dissertation done under Gordan, which was devoted to symbolic computation of invariants, and in fact a later source of some embarrassment. The section would benefit by emphasizing this, and summarizing the sources better (and referring to them). Tito Omburo (talk) 19:33, 13 October 2024 (UTC)
- My impression from working on the article previously was that everything discussed in it is addressed in the references already present (and for a math topic, having a clickly blue linky number for each sentence doesn't necessarily go further to satisfying WP:V than having one per subsection). But this would be a good opportunity to point readers at references that are particularly good. Anybody have favorite books about either of those? XOR'easter (talk) 18:30, 13 October 2024 (UTC)
- As an update to this, there's now 13 citation needed tags left to take care of. 5 are specifically in the ascending and descending chain conditions section. Sgubaldo (talk) 15:29, 3 November 2024 (UTC)
- Thanks. XOR'easter (talk) 17:21, 4 November 2024 (UTC)
- The first epoch of algebraic invariant theory says "an example, if a rigid yardstick is rotated, the coordinates (x1, y1, z1) and (x2, y2, z2) of its endpoints change ...". How is this related to the article but does not explicitly says about that example? Dedhert.Jr (talk) 07:25, 5 November 2024 (UTC)
- I think that line was just trying to explain what "invariant" means. I trimmed the notation, since we don't use it later. 10 {{citation needed}} tags remain. XOR'easter (talk) 21:35, 10 November 2024 (UTC)
- Needed: a readable introduction to algebraic invariant theory, and likewise for ascending/descending chain conditions. XOR'easter (talk) 20:17, 15 November 2024 (UTC)
- I've reached out to an algebraist colleage to ask for assistance. --JBL (talk) 21:03, 16 November 2024 (UTC)
- @JayBeeEll, apologies for the ping, just wondering if you were still able to do this. Sgubaldo (talk) 12:21, 6 December 2024 (UTC)
- Hi Sgubaldo -- I'm traveling currently and not able to log in or to make time to edit at the moment. I did make a couple changes based on my colleague's advice that dealt with one or two of the cn tags (back in November) -- I think I can probably fix up a couple more of them, but I will not get to it for at least another week. --158.144.178.11 (talk) 17:08, 9 December 2024 (UTC)
- Alright, thank you. Sgubaldo (talk) 17:12, 9 December 2024 (UTC)
- Hi Sgubaldo -- I'm traveling currently and not able to log in or to make time to edit at the moment. I did make a couple changes based on my colleague's advice that dealt with one or two of the cn tags (back in November) -- I think I can probably fix up a couple more of them, but I will not get to it for at least another week. --158.144.178.11 (talk) 17:08, 9 December 2024 (UTC)
- @JayBeeEll, apologies for the ping, just wondering if you were still able to do this. Sgubaldo (talk) 12:21, 6 December 2024 (UTC)
- I've reached out to an algebraist colleage to ask for assistance. --JBL (talk) 21:03, 16 November 2024 (UTC)
- The first epoch of algebraic invariant theory says "an example, if a rigid yardstick is rotated, the coordinates (x1, y1, z1) and (x2, y2, z2) of its endpoints change ...". How is this related to the article but does not explicitly says about that example? Dedhert.Jr (talk) 07:25, 5 November 2024 (UTC)
- I've done the cn tag relating to Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern, which was mentioned in the FAR. I have a question about one of the sentences in that paragraph. Full disclosure that I am not familiar with much abstract algebra. The sentence currently reads "...the Dedekind domains:[1] integral domains that are Noetherian, 0- or 1-dimensional, and integrally closed in their quotient fields.[2]" and defines Dedekind domains.
- This is what Page 13 of Noether, 1983 (collected papers) says (formatted slightly for brevity):
In Abstrakter Aufbau der Idealtheorie ... Noether gave the first characterization of the class of rings now known as Dedekind rings: the commutative rings in which factorization of ideals as products of prime ideals holds. She showed that the following conditions were necessary and sufficient for the validity of the prime ideal factorization theorem:
I – The ascending chain condition for ideals.; II – The descending chain condition modulo every non-zero ideal.; III – Existence of a unit element.; IV – Non-existence of zero divisors.; V – Integral closure in the field of fractions.- This is what Page 96 of Rowe, 2021 says:
In [Noether 1927a], Emmy Noether was able to give a general proof of Dedekind’s fundamental theorem and its converse on the basis of five axioms for a Dedekind ring. In her earlier paper [Noether 1921b], “Theory of Ideals in Ring Domains,” she introduced a general concept for rings that merely had to satisfy one axiom: the ascending chain condition. This acc now became Axiom 1 in [Noether 1927a] and its counterpart, the descending chain condition (dcc), was formulated as Axiom 2. She had not, however, explicitly stated that the ring R must possess an identity element for multiplication. Pavel Urysohn brought this oversight to her attention in 1923, and so she introduced this as Axiom 3, while pointing out that Urysohn had alerted her to it [Noether 1927a, 494]. Axiom 4 further stipulates that the ring must have no zero divisors. Finally, Axiom 5 introduces the decisive condition that the ring R must be algebraically closed in its associated quotient field (i.e. the smallest field that contains R). These are the five axioms for a Dedekind ring found in textbooks today.
- I wanted to change it to something like "... Dedekind domains. Noether showed that five conditions were necessary for this to be valid: the rings have to satisfy the ascending and descending chain conditions, they must possess a unit element, but no zero divisors, and they must be integrally closed in their associated quotient fields.[3][1]" but I was worried it was either wrong or redundant. Sgubaldo (talk) 21:25, 18 November 2024 (UTC) Sgubaldo (talk) 21:25, 18 November 2024 (UTC)
- The current version is heavy on modern terminology. I suggest "the ideals have unique factorization into prime ideals (now called Dedekind domains). Noether showed that these rings were characterized by five conditions: they must satisfy the ascending and descending chain conditions, they must possess a unit element but no zero divisors, and they must be integrally closed in their associated fields of fractions." + appropriate wikilinks. --JBL (talk) 23:39, 19 November 2024 (UTC)
- Done, thanks. Sgubaldo (talk) 00:24, 20 November 2024 (UTC)
- The current version is heavy on modern terminology. I suggest "the ideals have unique factorization into prime ideals (now called Dedekind domains). Noether showed that these rings were characterized by five conditions: they must satisfy the ascending and descending chain conditions, they must possess a unit element but no zero divisors, and they must be integrally closed in their associated fields of fractions." + appropriate wikilinks. --JBL (talk) 23:39, 19 November 2024 (UTC)
- Thanks. XOR'easter (talk) 17:21, 4 November 2024 (UTC)
- Update: citation needed tags are down to 5. Per XOR'easter's message above, two are in the the algebraic invariant theory section and two are under the acc and dcc section. The algebraic invariant theory section, or perhaps both, could do with a better introduction. Sgubaldo (talk) 19:16, 21 November 2024 (UTC)
References
- ^ a b Noether 1983, p. 13.
- ^ Atiyah & MacDonald 1994, pp. 93–95.
- ^ Rowe 2021, p. 96.
If anyone here wants to contribute to this new stub, please do! Geometry guy 01:54, 24 November 2024 (UTC)
- @Geometry guy: It may make sense to cover invariant theory as well? Since it seems in the past, there wasn’t much a distinction between the two subjects. —- Taku (talk) 05:59, 5 December 2024 (UTC)
- I agree - I think a history article like this should be quite broad. Representation theory links to invariant theory, harmonic analysis, the Langlands programme, quantum mechanics and much more, not "just" group theory. We may even decide to change the title at some point, but first there is a lot of material to gather! Geometry guy 13:05, 5 December 2024 (UTC)
- Keith Conrad has a great article about this. Since Frobenius is mentioned in the stub already, it seems like a good place to discuss group determinants and circulants. ReflectiveDucky (talk) 21:48, 18 December 2024 (UTC)
In trying to clean up a ... thing, I noticed the article Pascal's simplex. It doesn't look like a topic that can sustain a whole encyclopedia article. Pascal's pyramid is not in great shape, either. I feel like some de-OR-ing, merging, and redirecting is warranted here, but maybe others have a better sense of what is going on. XOR'easter (talk) 02:01, 8 December 2024 (UTC)
- I have looked at Pascal's pyramid from time to time, and it always induced a deep sigh. I agree that there's only one article's-worth of content here; I'm sure there must be some other adequate sources out there, but I don't know where. --158.144.178.11 (talk) 17:12, 9 December 2024 (UTC)
- I haven't found much. There's more than nothing (e.g., [1] and [2]), but it seems like pretty slim pickings. Maybe the first step is to redirect both Pascal's pyramid and Pascal's simplex to Pascal's triangle § To higher dimensions. XOR'easter (talk) 03:19, 12 December 2024 (UTC)
- Google scholar: "pascal pyramid" has 342 results and "pascal tetrahedron" has a further 123 results. pascal trinomial has 1,510 results, at least many of which seem relevant. –jacobolus (t) 03:50, 12 December 2024 (UTC)
- I did some searching but was disappointed by how quickly the results trailed off into unpublished preprints and weird stuff. I could well have been pessimistic. XOR'easter (talk) 04:51, 12 December 2024 (UTC)
- It's a kind of "let's explore the patterns" topic which can be examined without much prerequisite knowledge, so plenty of the sources are aimed at a student audience. I'm not sure there's all that much to say, but I think it's at least enough to make an article about. –jacobolus (t) 06:22, 12 December 2024 (UTC)
- I did some searching but was disappointed by how quickly the results trailed off into unpublished preprints and weird stuff. I could well have been pessimistic. XOR'easter (talk) 04:51, 12 December 2024 (UTC)
- Google scholar: "pascal pyramid" has 342 results and "pascal tetrahedron" has a further 123 results. pascal trinomial has 1,510 results, at least many of which seem relevant. –jacobolus (t) 03:50, 12 December 2024 (UTC)
- I haven't found much. There's more than nothing (e.g., [1] and [2]), but it seems like pretty slim pickings. Maybe the first step is to redirect both Pascal's pyramid and Pascal's simplex to Pascal's triangle § To higher dimensions. XOR'easter (talk) 03:19, 12 December 2024 (UTC)
- I think Pascal's simplex should be merged into Pascal's pyramid. Mathwriter2718 (talk) 12:49, 23 December 2024 (UTC)
- I agree with this. There are hundreds of sources mentioning "pascal's pyramid" or "pascal's tetrahedron" or "pascal's 3-simplex" or similar, and only dozens of sources mentioning "pascal's polytope", "pascal's simplex", "pascal's hypertetrahedron", or the like. Our article Pascal's simplex is currently completely unsourced and not very encyclopedic. I think we can merge it into Pascal's pyramid and cut the content down to something pretty brief, mostly a pointer to the handful of sources that turn up in a literature search. –jacobolus (t) 06:51, 24 December 2024 (UTC)
- That sounds like a good idea. XOR'easter (talk) 19:03, 24 December 2024 (UTC)
- I agree with this. There are hundreds of sources mentioning "pascal's pyramid" or "pascal's tetrahedron" or "pascal's 3-simplex" or similar, and only dozens of sources mentioning "pascal's polytope", "pascal's simplex", "pascal's hypertetrahedron", or the like. Our article Pascal's simplex is currently completely unsourced and not very encyclopedic. I think we can merge it into Pascal's pyramid and cut the content down to something pretty brief, mostly a pointer to the handful of sources that turn up in a literature search. –jacobolus (t) 06:51, 24 December 2024 (UTC)
Broken overlines
[edit]I just noticed that (\overline x) shows up as an underline instead of an overline. What’s going on?—Emil J. 11:39, 12 December 2024 (UTC)
- It shows up as an overline on my end... Sgubaldo (talk) 12:21, 12 December 2024 (UTC)
- On further investigation, it is broken when math rendering preferences are set to “MathML” or “Client side MathJax rendering”, but it shows correctly when set to “SVG”.—Emil J. 20:06, 12 December 2024 (UTC)
Help resolving disputes about history at Binomial theorem
[edit]Hi everyone. Can anyone pop by talk:Binomial theorem to help resolve a dispute about whether or not and how to discuss the history of binomial coefficients and Pascal's triangle in the history section there? user:Wikaviani has been repeatedly blanking material they don't like about these topics, based on in my opinion completely unjustified and inappropriate complaints about the quality of previous sources used there, so I added a pile of additional sources, but for each one they have some kind of complaint: close secondary analysis by subject expert Indian historians of mathematics are rejected because they are a few decades old, but more recent sources are rejected because they are by historians specializing in other regions or by people whose job title is "mathematician" (but writing peer-reviewed papers in math history journals or reputably published history books), with these rejections expressed using language I find to be quite insulting. The content dispute basically boils down to whether the following 10th century passage (here in translation) describes the same thing as Pascal's triangle, which a wide variety of authors claim it does:
- "After drawing a square on the top, two squares are drawn below (side by side) so that half of each is extended on either side. Below it three squares, below it (again) four squares are drawn and the process is repeated till the desired pyramid is attained. In the (topmost) first square the symbol for one is to be marked.. Then in each of the two squares of the second line figure one is to be placed. Then in the third line figure one is to be placed on each of the two extreme squares. In the middle square (of the third line) the sum of the figures in the two squares immediately above is to be placed; this is the meaning of the term pūrṇa. In the fourth line one is to be placed in each of the two extreme squares. In each of the two middle squares, the sum of the figures in the two squares immediately above, that is, three, is placed. Subsequent squares are filled in this way."
user:Wikaviani insists it couldn't possibly, because a couple of sources about the history of medieval Islamic mathematics instead claim that the first table of binomial coefficients appeared in works from Persia which means the same numbers couldn't possibly have appeared elsewhere before. Thus they insist on removing any mention of the above from the history section at binomial theorem. –jacobolus (t) 13:29, 12 December 2024 (UTC)
Hi, I just want to represent fairly what the views of sources are, in a way like "some sources claim X" (cite sources) "while others say Y" (cite sources), not removed anything, I even expanded Pascal's triangle with the addition of Indian contributions to it. Besides, could someone explain Jacobolus that mathematicians and physicians are not historians of science please ? They insist to keep a CITEOVERKILL number of sources with many of them having no expertise in the field of history of maths and accuse me of throwing insults around when I say that (see sources number 11 at Binomial theorem please). Also, the so-called "couple of sources" mentioned by Jacobolus are an Oxford publication, an encyclopaedia from Helaine Selin, a book from Roshdi Rashed and and another from Glen Van Brummelen and Nathan Sidoli. Thanks very much. Best.---Wikaviani (talk) (contribs) 14:03, 12 December 2024 (UTC)
- I am not a specialist of the history of mathematics, but this is not required to see who is right here. Indeed Wikaviani provides sources saying rougly "As far as we know, the first description of <something> occurred during the 12th century in the Islamic world". On the other hand Jacobolus provides a source containing the translation of a text of the 8th century, in which everyone can recognize easily as a fully correct description of Pascal's triangle, in a very modern style. It is clear that the latter is really reliable, while the former is reliable only if it is not contradicted by data that are ignored by its author. Wikipedia is about facts, not about opinions.
- Also, all Wikaviani arguments are based only on its opinion on the sources and their authors, without anything tangible for supporting them, while Jacobolus discusses content and provides verifiable arguments supporting his views.
- The discussion at talk:Binomial theorem suggests that Wikaviani is not there for improving the article, but for pushing his point of view. D.Lazard (talk) 15:39, 12 December 2024 (UTC)
- Hi, thank you for you response, even if I guess that our past disagreements may influence your quite harsh feedback here about me. You say that you are not a specialist of the history of maths while, interestingly, you are a mathematician, this illustrates what I'm saying about some of the sources provided by Jacobolus. I'm not trying to push anything, I'm trying to improve this topic, both at Binomial theorem and Pascal's triangle, maybe clumsily, but I'm trying. I expanded the Pascal's triangle article this morning, adding what Jacobolus added to Binomial theorem about the triangle. If that translation of that work was enough to settle the subject, I'm wondering why so many prominent sources like the above mentioned by me and that were published well after the said translation are contradicting it ? Also "Also, all Wikaviani arguments are based only on its opinion on the sources and their authors, without anything tangible for supporting them" is not correct, I am not willing to remove the content added by Jacobolus anymore, i want to balance it with what other more recent sources say. Wikipedia is also about WP:NPOV. I would like more feedback from uninvolved editors. Thanks.---Wikaviani (talk) (contribs) 16:56, 12 December 2024 (UTC)
mathematicians and physicians are not historians of science
– This kind of binary classification is oversimplified to the point of being wrong. Many excellent works (both close analysis of primary sources and higher level surveys) in the history of mathematics are done by people whose nominal job title is "mathematician" and who teach pure mathematics courses in a mathematics department. If a scholar has a passion for the history of mathematics and science, reads widely and deeply in the subject, publishes their careful work in peer-reviewed history journals or in books from major scholarly publishers with high editorial standards, and that work is widely cited in the field, then such material clearly meets Wikipedia's "reliable sources" standard, and I would call these scholars "mathematical historians" even if that's not their job title at a university. For example, the best recent source about the specific topic of the combinatorics appearing in ancient Indian works about prosody is Jayant Shah (2013) "A History of Piṅgala's Combinatorics" (preprint) – Shah is a mathematics professor at Northeastern, here writing in Gaṇita Bhāratī, a respected peer-reviewed journal of mathematical history. Ranjan Roy (2021) Series and Products in the Development of Mathematics, published by Cambridge University Press, is a fabulous broad survey by a scholar who did extensive historical research, even if he was also nominally a mathematician. Both of these have been widely cited by historians and in my opinion clearly meet Wikipedia's standards.insist to keep a CITEOVERKILL number of sources
– Just to be clear: I think it's entirely enough to validate this claim with one or two sources, and of diminishing use to readers to add each extra one (though they're all in a single footnote, so not cluttering up the text too much). I would have left a few close sources which discuss the topic in great detail, but given continuing removal of the claims justified by complaints that the career professionals who wrote them were "unreliable", not "expert" enough, "outdated", not "serious" scholars, and so on, I kept trying to find sources which would be acceptable to validate the claim, including recent sources, sources by authors from a range of countries and backgrounds, sources in survey books, etc. My speculation continues to be that the sources aren't really a problem per se; Wikaviani just doesn't want to include the claim (for reasons I can't figure out from their statements alone) and isn't going to change their mind no matter which sources are found.an Oxford publication, an encyclopaedia from Helaine Selin, a book from Roshdi Rashed and and another from Glen Van Brummelen and Nathan Sidoli.
– let's please remain accurate. The original source here is Rashed (1972) "L'induction mathématique: al-Karajī, al-Samawʾal", Archive for History of Exact Sciences 9: 1–21. Then Berggren (1985) is a survey paper about recent work in the history of Islamic mathematics mentioning Rashed's work; later Berggren's paper was republished in a book edited by Sidoli and Van Brummelen. Jacques Sesiano's encyclopedia entry about al-Karajī (in a book edited by Selin) also drew on Rashed's paper. Finally Rashed himself turned the paper into a chapter of his 1994 book. The sourcing here (a single close secondary source from a half-century ago whose claims have been repeated a few times by survey sources) is not substantially different in character than the sourcing I provided for claims about Indian contributions. In any event, I have no problem with Rashed, who did valuable work worth citing in discussing al-Samawʾal and al-Karajī in relevant Wikipedia articles, or with Berggren or Sesiano. Even though Berggren's job title was "mathematician" he did excellent work in the history of mathematics, and his 1985 paper is a fine survey.- Most importantly, the claims involved here are not in conflict. Rashed's 1972 paper was about looking for evidence of mathematical induction in the work of 12th century scholar al-Samawʾal, specifically in his work on the binomial theorem which was credited by him to a now-lost work by al-Karajī (c. 1000). There was no discussion whatsoever of combinatorial work done in India, nor would we expect there to be – it's irrelevant to Rashed's argument and not something Rashed was an expert about. It's also unsurprising that a survey paper about work on Islamic mathematics or an encyclopedia entry about al-Karajī wouldn't go out of their way to discuss topics irrelevant to their purpose.
- Using sources about one topic as a reason to reject claims about another topic does not seem at all justifiable to me. –jacobolus (t) 17:34, 12 December 2024 (UTC)
- Of course, a mathematician can also be a historian of maths, but this is not mandatory. Rashed himself is a mathematician and a historian of sciences.---Wikaviani (talk) (contribs) 18:29, 12 December 2024 (UTC)
- Any editor who has spent any time at DYK should know that "first" claims from published sources are often wrong, and when they are wrong can be falsified by other published sources that document earlier occurrences. Here, we have multiple published sources that document early occurrences of binomial coefficients in India, clearly falsifying the "first" claim for Persia. That does not mean India was first, nor that we should omit the material on Persia, but we should not claim Persia as first. Incidentally, the history of the history of Indian study of binomial coefficients goes quite far back; Plofker's book cites Burrow, Reuben (1790), "A Proof that the Hindoos had the Binomial Theorem", Asiatick Researches: 487–497. —David Eppstein (talk) 18:40, 12 December 2024 (UTC)
I don't think the article should take any stance on "priority", since this to me violates the spirit of NPOV. Also, the article shouldn't suggest (as it currently does) that there is some controversy over priority. One paragraph should describe scholarship on the Indian contributions, and the next on that of Persia and the near east. We don't need to say anything about who did what before whom, except to establish basic chronology within each paragraph. Tito Omburo (talk) 21:24, 12 December 2024 (UTC)
- You can see my preferred version at special:permalink/1262136996#History, which does roughly this. –jacobolus (t) 00:22, 13 December 2024 (UTC)
- That seems fine. The treatment of the history at Pascal's triangle should be improved with similar content. Tito Omburo (talk) 16:37, 13 December 2024 (UTC)
Does anyone use the WP:LIBRARY?
[edit]Just curious, does anyone here use the WP:LIBRARY? I'm working my way towards 500 edits so that I can more easily contribute to articles which require more academic citations, but I'm unsure of how good of a resource the library really is. How much mathematics research is available through it? Are there any hoops you have to jump through to gain access to more specialized information (beyond being extended confirmed)? Thanks in advance, /home/gracen/ (they/them) 18:56, 16 December 2024 (UTC)
- I use the Wikipedia library frequently, at least every couple weeks I'm looking something up. Bear in mind that the library is not a library of Wikipedia specific resources, but provides access to resources from a wide range of academic publishers in many fields. I primarily use it for legal writing, but I'm sure you can find mathematics content. BD2412 T 19:23, 16 December 2024 (UTC)
- I don't know about the mathematics research, but for physics the Library is awesome. The access levels depend dramatically upon the publisher. For some publishers you can read almost any of their content. Some publishers are not even available.
- The biggest hoop after you have a login is search. The publisher's search is rocks-and-stones level for the most part. So I do my searches via Google Scholar, then use the title or an unusual author's name to search on the publisher's "advanced search" page which supports exact match.
- At least in physics, the decades long shift to open access is starting to have effects. I have found that the document links on Google Scholar (when they exist) now mostly point to published papers on the publishers site. Johnjbarton (talk) 19:24, 16 December 2024 (UTC)
- It is more or less comparable to browsing online scholastic resources from a university library. In the era of Sci-Hub and #ICanHazPDF most scholars around the world who are motivated can find access to most recent published papers, but in theory reading academic papers without authorization is some kind of mild copyright infringement, and "Wikipedia Library" is all above board. –jacobolus (t) 19:33, 16 December 2024 (UTC)
- I use it. I get access to many of the same sources through my employer but for some of them I don't and sometimes The Wikipedia Library provides a more convenient access path. Quite a few mathematical references are available on JSTOR, in particular, which is available through it, and many mathematical theses are online through Proquest. I don't know of any extra hoops beyond just getting access at all. —David Eppstein (talk) 19:53, 16 December 2024 (UTC)
- Unfortunately most of the theses on Proquest that I have ever tried to look at are not available via Wikipedia Library. –jacobolus (t) 21:29, 16 December 2024 (UTC)
- Thanks a lot to everyone who replied! Very much looking forward to gaining access so I can learn more about and help expand articles on mathematics. Also, thanks to the Wikipedia community in general for being so welcoming and kind :)
- /home/gracen/ (they/them) 15:32, 17 December 2024 (UTC)
In 2023 [3], this article turned from a statistical/mathematical-heavy general topic to a business topic; and from a non-AI topic to an AI-topic. This seems odd, as the article already describes non-business uses; and uses that are not-AI based. -- 65.92.246.77 (talk) 15:38, 17 December 2024 (UTC)
Please check Modular arithmetic
[edit]Please check the recent edits to Modular arithmetic - I don't think that they are constructive. Bubba73 You talkin' to me? 05:25, 18 December 2024 (UTC)
- If you are talking of the 3 last edits by a new editor (username in red), I reverted them before reading this post. D.Lazard (talk) 09:52, 18 December 2024 (UTC)
- Yes, thanks. Bubba73 You talkin' to me? 17:53, 25 December 2024 (UTC)
Draft about Arend Bayer
[edit]Draft here: Draft:Arend Bayer
Anyone willing to help me create the article about algebraic geometer Arend Bayer?
Duseverse (talk) 00:27, 19 December 2024 (UTC)
New publication of possible interest to project members
[edit]Eppstein, D.; Lewis, J. B.; Woodroofe, Russ; XOR'easter (2025), "Princ-wiki-a mathematica: Wikipedia editing and mathematics" (PDF), Notices of the AMS, 72 (1): 65–73. —David Eppstein (talk) 18:53, 20 December 2024 (UTC)
- Nice work. Hopefully giving a balanced impression of what lies in store for editors attracts more potential contributions than it scares away. :-P –jacobolus (t) 20:26, 20 December 2024 (UTC)
- I've just finished reading it from beggining to end. Btw, I've noticed even articles about Fields Medalist can be stubby (e.g. Shigefumi Mori). Yesterday I wondered if it was not because so few professional mathematicians participate in Wikipedia work. Duseverse (talk) 20:56, 20 December 2024 (UTC)
- As an alternative guess, I suggest that biographies don't interest everyone. Johnjbarton (talk) 21:52, 20 December 2024 (UTC)
- Yes, unfortunately (because one can learn a lot of math beggining by reading biographies, IMO). Duseverse (talk) 22:36, 20 December 2024 (UTC)
- As an alternative guess, I suggest that biographies don't interest everyone. Johnjbarton (talk) 21:52, 20 December 2024 (UTC)
To our list of Wikipedia articles that don't exist, about subjects that don't exist, which includes Omphalology, we can add Non-Riemannian hypersquare. Michael Hardy (talk) 21:20, 22 December 2024 (UTC)
- For at least 15 years, maybe more, I've thought an article like this ought to appear in a publication of that sort, and pondered attempting to write one, and never really felt up to it, and this one is better than what I would have done. I may write a response that complements it by adding some specific tips about editing Wikipedia articles. Michael Hardy (talk) 03:59, 24 December 2024 (UTC)
- @David Eppstein, @XOR'easter. That is unexpected. Good job! Dedhert.Jr (talk) 04:02, 24 December 2024 (UTC)
- Thanks to the pointer in The Signpost, I just finished reading "Wikipedia Editing and Mathematics" (doi:10.1090/noti3096). I don't speak math very well but I do know communication and readability and it's so good. Also, funny. One line even earned my highest honor, inclusion on User:Jengod/Notable quotables, right below a Beyoncé lyric. Seriously tho, thanks to all the contributors. I know it will have good effects on our math content and it was a joy to read. Cheers, jengod (talk) 04:44, 27 December 2024 (UTC)
Wikifunctions
[edit]What, if anything, do we want to do about Wikifunctions? David Eppstein recently reverted the addition of a link to it at the top of Ackermann function, saying it didn't belong in the lead and perhaps not anywhere.
I see David's point, particularly in regards to this function, which will in most cases never return (e.g. will take longer than the age of the universe to compute). But it also kind of reminds me of Wiktionary links, which are usually a good thing, and I could see this possibly making sense in some cases. If not, it's kind of like saying we've decided the Wikifunctions project itself isn't useful (which of course may be true; at least I'm not sure exactly what it's supposed to be useful for).
Anyway, not sure. Just thought maybe we should think about it. --Trovatore (talk) 22:54, 22 December 2024 (UTC)
- I would recommend putting these in the "See also" sections of pages, if anywhere. Abstract Wikipedia § Development (2020–present) doesn't sound promising:
According to an evaluation by four Google Fellows working on the project, it was at a "substantial risk of failure" due to its poor technical plan. The Google Fellows recommended that Abstract Wikipedia be decoupled from Wikifunctions, that Wikifunctions refine MediaWiki's support for programming in Lua rather than having a completely new language, and that Abstract Wikipedia converge on a unified approach to natural language generation (NLG) that builds on open source software if possible. The Wikimedia Foundation staff responded to this report by completely rejecting the idea that Abstract Wikipedia and Wikifunctions could be separated, and accusing the Google Fellows of making "fallacies and false comparisons". The Wikimedia Foundation also stated that using existing NLG pipelines like Grammatical Framework could not support certain languages such as the Niger–Congo B languages, and would also "replicate the trends of an imperialist English-focused Western-thinking industry."
- This cites Wikipedia:Wikipedia_Signpost/2023-01-01/Technology_report, which, OMG. Here's the creator's explanation of the goal of Abstract Wikipedia:
"Instead of saying "in order to deny her the advantage of the incumbent, the board votes in January 2018 to replace her with Mark Farrell as interim mayor until the special elections", imagine we say something more abstract such as
elect(elector: Board of Supervisors, electee: Mark Farrell, position: Mayor of San Francisco, reason: deny(advantage of incumbency, London Breed))
– and even more, all of these would be language-independent identifiers, so that thing would actually look more likeQ40231(Q3658756, Q6767574, Q1343202(Q6015536, Q6669880))
.
- Looking further though denial (Q1343202) is described as "rejecting a fact despite the overwhelming evidence of its truth based on fear of its outcome", which as far as I can tell is a completely incorrect sense of the word to use here. And Q6015536 is linked to the article Incumbency advantage for appointed U.S. senators, which is also moderately off of the intended topic. That's without mentioning that none of the proposed logic about the meaning of elect(...) is yet defined anywhere, and seems quite difficult to do for every possible English sentence, as seems to be the goal here. An inability to make a single simple example work gives some indication of how extremely difficult this would be as a project.
- –jacobolus (t) 23:02, 22 December 2024 (UTC)
- Ohhh...kayyy. One of the Foundation's wild hares, I guess. Someday the WMF is going to get studied as an example of the pathologies that can overtake a well-meaning organization. --Trovatore (talk) 23:09, 22 December 2024 (UTC)
- I don't see these as different in kind from the random online forms for calculating things that are all over the web, that I routinely remove from external links. Like those, I get the impression that a lot of the impetus for adding the link is to promote the site rather than to provide a useful resource.
- You never really know what algorithm they're using, how efficient it is, what issues with numerical precision they might have, etc. Maybe being an official WMF project gaves them a little something extra. But then, in this case, there's also the disadvantage that it will not ever compute any nontrivial values of the function.
- I would prefer not linking them at all, but if they are to be linked they belong in the external links section with the commons and wiktionary links. —David Eppstein (talk) 23:19, 22 December 2024 (UTC)
- I didn't know about Abstract Wikipedia. It sounds implausible to me. If the underlying motive here is to push AW, I'd say we hold off on that at least till there's some sort of Minimal Viable Product. I don't think we need to be early adopters there.
- Anyway, I'm satisfied to leave things as they are for now. I just wanted to get the question out for discussion. --Trovatore (talk)
- Of all the possible things to waste several people-years of salary on with nothing to show at the end, Abstract Wikipedia and Wikifunctions isn't the worst thing I can imagine. But if I had to bet I'd put extremely long odds on this endeavor accomplishing any nontrivial portion of its stated goals. I don't think we need to be promoting it from Wikipedia articles about algorithms or mathematical functions, but to the extent that we do, it should definitely go down at the bottom of pages in 'See also' or 'External links', not up at the top. –jacobolus (t) 23:48, 22 December 2024 (UTC)
- Ohhh...kayyy. One of the Foundation's wild hares, I guess. Someday the WMF is going to get studied as an example of the pathologies that can overtake a well-meaning organization. --Trovatore (talk) 23:09, 22 December 2024 (UTC)
Quick request re Go and mathematics
[edit]I'm not sure how this article is on my watchlist (looks like I have one edit from 2021) but could someone knowledgeable on the topic please review these recent edits? Folly Mox (talk) 13:38, 24 December 2024 (UTC)
Looping animated gifs being banned in the name of accessibility
[edit]Please see discussion at Talk:Four-dimensional space § Animation fails standards and Wikipedia talk:Manual of Style/Accessibility § Looping GIFs and accessibility re whether looping GIFs such as File:8-cell-simple.gif can be allowed as illustrations of articles, on the supposed grounds that because the loop cannot be stopped there is an accessibility problem with them. —David Eppstein (talk) 23:41, 24 December 2024 (UTC)